/*
 * Copyright (c) 2004 David Flanagan. All rights reserved.
 * This code is from the book Java Examples in a Nutshell, 3nd Edition.
 * It is provided AS-IS, WITHOUT ANY WARRANTY either expressed or implied.
 * You may study, use, and modify it for any non-commercial purpose,
 * including teaching and use in open-source projects.
 * You may distribute it non-commercially as long as you retain this notice.
 * For a commercial use license, or to purchase the book,
 * please visit http://www.davidflanagan.com/javaexamples3.
 */
package je3.net;
import java.io.*;
import java.net.*;

/**
 * This program connects to a server at a specified host and port.
 * It reads text from the console and sends it to the server.
 * It reads text from the server and sends it to the console.
 **/
public class GenericClient {
 public static void main(String[] args) throws IOException {
 try {
 // Check the number of arguments
 if (args.length != 2)
 throw new IllegalArgumentException("Wrong number of args");
	
 // Parse the host and port specifications
 String host = args[0];
 int port = Integer.parseInt(args[1]);

 // Connect to the specified host and port
 Socket s = new Socket(host, port);
	
 // Set up streams for reading from and writing to the server.
 // The from_server stream is final for use in the inner class below
 final Reader from_server=new InputStreamReader(s.getInputStream());
 PrintWriter to_server = new PrintWriter(s.getOutputStream());

 // Set up streams for reading from and writing to the console
 // The to_user stream is final for use in the anonymous class below
 BufferedReader from_user =
 new BufferedReader(new InputStreamReader(System.in));
	 // Pass true for auto-flush on println()
	 final PrintWriter to_user = new PrintWriter(System.out, true);

 // Tell the user that we've connected
 to_user.println("Connected to " + s.getInetAddress() +
			 ":" + s.getPort());

 // Create a thread that gets output from the server and displays
 // it to the user. We use a separate thread for this so that we
 // can receive asynchronous output
 Thread t = new Thread() {
 public void run() {
 char[] buffer = new char[1024];
 int chars_read;
 try {
			// Read characters from the server until the
			// stream closes, and write them to the console
 while((chars_read = from_server.read(buffer)) != -1) {
			 to_user.write(buffer, 0, chars_read);
			 to_user.flush();
			}
 }
 catch (IOException e) { to_user.println(e); }

 // When the server closes the connection, the loop above
 // will end. Tell the user what happened, and call
 // System.exit(), causing the main thread to exit along
 // with this one.
		 to_user.println("Connection closed by server.");
 System.exit(0);
 }
 };

 // Now start the server-to-user thread
 t.start();

 // In parallel, read the user's input and pass it on to the server.
 String line;
 while((line = from_user.readLine()) != null) {
 to_server.print(line + "\r\n");
 to_server.flush();
 }

 // If the user types a Ctrl-D (Unix) or Ctrl-Z (Windows) to end
 // their input, we'll get an EOF, and the loop above will exit.
 // When this happens, we stop the server-to-user thread and close
 // the socket.

 s.close();
 to_user.println("Connection closed by client.");
	 System.exit(0);
 }
 // If anything goes wrong, print an error message
 catch (Exception e) {
 System.err.println(e);
 System.err.println("Usage: java GenericClient <hostname> <port>");
 }
 }
}

/*
 * Copyright (c) 2004 David Flanagan. All rights reserved.
 * This code is from the book Java Examples in a Nutshell, 3nd Edition.
 * It is provided AS-IS, WITHOUT ANY WARRANTY either expressed or implied.
 * You may study, use, and modify it for any non-commercial purpose,
 * including teaching and use in open-source projects.
 * You may distribute it non-commercially as long as you retain this notice.
 * For a commercial use license, or to purchase the book,
 * please visit http://www.davidflanagan.com/javaexamples3.
 */
package je3.net;
import java.io.*;
import java.net.*;

/**
 * This program is a very simple Web server. When it receives a HTTP request
 * it sends the request back as the reply. This can be of interest when
 * you want to see just what a Web client is requesting, or what data is
 * being sent when a form is submitted, for example.
 **/
public class HttpMirror {
 public static void main(String args[]) {
 try {
 // Get the port to listen on
 int port = Integer.parseInt(args[0]);
 // Create a ServerSocket to listen on that port.
 ServerSocket ss = new ServerSocket(port);
 // Now enter an infinite loop, waiting for & handling connections.
 for(;;) {
 // Wait for a client to connect. The method will block;
		// when it returns the socket will be connected to the client
 Socket client = ss.accept();

 // Get input and output streams to talk to the client
 BufferedReader in = new BufferedReader(
			 new InputStreamReader(client.getInputStream()));
 PrintWriter out = new PrintWriter(client.getOutputStream());

 // Start sending our reply, using the HTTP 1.1 protocol
 out.print("HTTP/1.1 200 \r\n"); // Version & status code
 out.print("Content-Type: text/plain\r\n"); // The type of data
		out.print("Connection: close\r\n"); // Will close stream
 out.print("\r\n"); // End of headers

 // Now, read the HTTP request from the client, and send it
 // right back to the client as part of the body of our
 // response. The client doesn't disconnect, so we never get
 // an EOF. It does sends an empty line at the end of the
 // headers, though. So when we see the empty line, we stop
 // reading. This means we don't mirror the contents of POST
 // requests, for example. Note that the readLine() method
		// works with Unix, Windows, and Mac line terminators.
 String line;
 while((line = in.readLine()) != null) {
 if (line.length() == 0) break;
 out.print(line + "\r\n");
 }

 // Close socket, breaking the connection to the client, and
		// closing the input and output streams
		out.close(); // Flush and close the output stream
		in.close(); // Close the input stream
 client.close(); // Close the socket itself
 } // Now loop again, waiting for the next connection
 }
 // If anything goes wrong, print an error message
 catch (Exception e) {
 System.err.println(e);
 System.err.println("Usage: java HttpMirror <port>");
 }
 }
}
[bookmark: _GoBack]
